دانلود مقاله ترجمه شده پزشکیدانلود مقاله ترجمه شده مهندسی پزشکیدانلود مقاله ترجمه شده مهندسی کامپیوترمقالات ترجمه شده 2021

ترجمه مقاله تشخیص خودکار مبتنی بر اشعه ایکس و سی تی اسکن کووید-19 – سال 2021


 

مشخصات مقاله:

 


 

عنوان فارسی مقاله:

تشخیص خودکار مبتنی بر اشعه ایکس و سی تی اسکن کووید-19 و طبقه بندی آن با استفاده از شبکه‌ های عصبی پیچشی (CNN)

عنوان انگلیسی مقاله:

X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN)

کلمات کلیدی مقاله:

یادگیری عمیق، CNN، صحت، یادآوری، دقت، ROC

مناسب برای رشته های دانشگاهی زیر:

مهندسی پزشکی، کامپیوتر و پزشکی

مناسب برای گرایش های دانشگاهی زیر:

سایبرنتیک پزشکی، هوش مصنوعی،ایمنی شناسی پزشکی، ویروس شناسی

وضعیت مقاله انگلیسی و ترجمه:

مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.

 


 

فهرست مطالب:

چکیده

۱. مقدمه

۲. بررسی آثار

3.مواد و روش‌ ها

3.1. روش پیشنهادی

3.2.مجموعه داده

3.3. ایجاد شبکه عصبی پیچشی

۴. نتایج و مباحث

4.1. نتایج

4.2. بحث

5.نتیجه ‌گیری

مراجع

 


 

قسمتی از مقاله انگلیسی و ترجمه آن:

Abstract
Covid-19 (Coronavirus Disease-2019) is the most recent coronavirus-related disease that has been announced as a pandemic by the World Health Organization (WHO). Furthermore, it has brought the whole planet to a halt as a result of the worldwide introduction of lockdown and killed millions of people. While this virus has a low fatality rate, the problem is that it is highly infectious, and as a result, it has infected a large number of people, putting a strain on the healthcare system, hence, Covid-19 identification in patients has become critical. The goal of this research is to use X-rays images and computed tomography (CT) images to introduce a deep learning strategy based on the Convolutional Neural Network (CNN) to automatically detect and identify the Covid-19 disease. We have implemented two different classifications using CNN, i.e., binary and multiclass classification. A total of 3,877 images dataset of CT and X-ray images has been utilised to train the model in binary classification, out of which the 1,917 images are of Covid-19 infected individuals . An overall accuracy of 99.64%, recall (or sensitivity) of 99.58%, the precision of 99.56%, F1-score of 99.59%, and ROC of 100% has been observed for the binary classification. For multiple classifications, the model has been trained using a total of 6,077 images, out of which 1,917 images are of Covid-19 infected people, 1,960 images are of normal healthy people, and 2,200 images are of pneumonia infected people. An accuracy of 98.28%, recall (or sensitivity) of 98.25%, the precision of 98.22%, F1-score of 98.23%, and ROC of 99.87% has been achieved for the multiclass classification using the proposed method. On the currently available dataset, the our proposed model produced the desired results, and it can assist healthcare workers in quickly detecting Covid-19 positive patients.

چکیده
کووید-19 (بیماری کرونا ویروس- ۲۰۱۹) جدیدترین بیماری مرتبط با کرونا ویروس است که از سوی سازمان جهانی بهداشت (WHO) به عنوان بیماری همه گیر اعلام شده است. به علاوه، این بیماری، کل کره زمین را به دلیل ورود سراسر جهان به قرنطینه متوقف کرده و میلیون ها نفر را به کام مرگ کشانده است. هرچند این ویروس میزان تلفات کمی دارد، اما مشکل اینجاست که بسیار مُسری است و در نتیجه افراد زیادی را آلوده کرده و بار زیادی را روی دوش سیستم بهداشت و درمان گذاشته است؛ از این رو، شناسایی کووید-19 در بیماران حیاتی شده‌ است. هدف از انجام تحقیق حاضر این است که با استفاده از تصاویر اشعه ایکس و تصاویر توموگرافی کامپیوتری یا مقطع نگاری رایانه ای (CT) یک راهبرد یادگیری عمیق مبتنی بر شبکه عصبی پیچشی (CNN) ارائه شود تا بتوان نسبت به تشخیص و شناسایی خودکار بیماری کووید-19 اقدام کرد. دو طبقه ‌بندی مختلف را به کمک شبکه های عصبی پیچشی (همگشتی) اجرا کردیم که عبارتند بودند از طبقه ‌بندی دودویی و چند کلاسه. در مجموع، یک مجموعه داده مشتکل از ۳۸۷۷ تصویر سی تی اسکن و اشعه ایکس برای آموزش مدل در طبقه بندی دودویی به کار گرفته شده‌ است که از میان آنها ۱۹۱۷ تصویر متعلق به افراد مبتلا به کووید-19 است. صحت کلی 64/99 درصد، یادآوری (Recall) (یا حساسیت) 58/99 درصد، دقت 56/99 درصد، امتیاز اف1 (F-1 score) برابر با 59/99 درصد و ROC (مشخصه عملکرد گیرنده) برابر با۱۰۰ درصد در طبقه ‌بندی دودویی مشاهده شده‌ است. در طبقه ‌بندی چندگانه، مدل با استفاده از کل 6077 تصویر آموزش دیده است که از میان آنها 1917 تصویر به افراد مبتلا به کووید-19، 1960 تصویر به افراد سالم عادی و ۲۲۰۰ تصویر نیز به افراد مبتلا به ذات الریه تعلق دارد. صحت 28/98 درصد، یادآوری (یا حساسیت) 25/98 درصد، دقت 22/98 درصد، امتیاز اف 1 به میزان 23/98 درصد و ROC برابر با 87/99 درصد برای طبقه ‌بندی چند کلاسه با استفاده از روش پیشنهادی بدست ‌آمده است. در مجموعه داده‌ موجود اخیر، مدل پیشنهادی ما، نتایج مورد نظر را ارائه نموده و هم چنین می ‌تواند در تشخیص سریع بیماران کووید-19 مثبت به کادر درمان کمک کند.

 


 

دانلود رایگان مقاله انگلیسی

خرید ترجمه مقاله

 


 

نوشته های مشابه

دکمه بازگشت به بالا