دانلود رایگان مقاله شناسایی حملات دیداس (DDoS) و طبقه بندی – سال 2020
مشخصات مقاله:
عنوان فارسی مقاله:
شناسایی حملات دیداس (DDoS) و طبقه بندی با استفاده از یک رویکرد ترکیبی
عنوان انگلیسی مقاله:
Detection of DDoS Attack and Classification Using a Hybrid Approach
کلمات کلیدی مقاله:
حمله DDoS، رایانش ابری، یادگیری ماشین، ابزار Weka، انتخاب ویژگی ها، اعتبار سنجی متقابل، طبقه بندی کننده ها
مناسب برای رشته های دانشگاهی زیر:
مهندسی کامپیوتر و فناوری اطلاعات
مناسب برای گرایش های دانشگاهی زیر:
مهندسی الگوریتم ها و محاسبات ، مهندسی نرم افزار، شبکه های کامپیوتری
وضعیت مقاله انگلیسی و ترجمه:
مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF با کلیک بر روی دکمه آبی، دانلود نمایید. برای ثبت سفارش ترجمه نیز روی دکلمه قرمز رنگ کلیک نمایید. سفارش ترجمه نیازمند زمان بوده و ترجمه این مقاله آماده نمیباشد و پس از اتمام ترجمه، فایل ورد تایپ شده قابل دانلود خواهد بود.
فهرست مطالب:
Introduction
Related Works
Dataset Collection and Pre-Processing
Proposed Model
Results and Analysis
قسمتی از مقاله انگلیسی:
Abstract
In the area of cloud security, detection of DDoS attack is a challenging task such that legitimate users use the cloud resources properly. So in this paper, detection and classification of the attacking packets and normal packets are done by using various machine learning classifiers. We have selected the most relevant features from NSL KDD dataset using five (Information gain, gain ratio, chi-squared, ReliefF, and symmetrical uncertainty) commonly used feature selection methods. Now from the entire selected feature set, the most important features are selected by applying our hybrid feature selection method. Since all the anomalous instances of the dataset do not belong to DDoS category so we have separated only the DDoS packets from the dataset using the selected features. Finally, the dataset has been prepared and named as KDD DDoS dataset by considering the selected DDoS packets and normal packets. This KDD DDoS dataset has been discretized using discretize tool in weka for getting better performance. Finally, this discretize dataset has been applied on some commonly used (Naive Bayes, Bayes Net, Decision Table, J48 and Random Forest) classifiers for determining the detection rate of the classifiers. 10 fold cross validation has been used here for measuring the robustness of the system. To measure the efficiency of our hybrid feature selection method, we have also applied the same set of classifiers on the NSL KDD dataset, where it gives the best anomaly detection rate of 99.72% and average detection rate 98.47% similarly, we have applied the same set of classifiers on NSL DDoS dataset and obtain the average DDoS detection of 99.01% and the best DDoS detection rate of 99.86%. In order to compare the performance of our proposed hybrid method, we have also applied the existing feature selection methods and measured the detection rate using the same set of classifiers. Finally, we have seen that our hybrid approach for detecting the DDoS attack gives the best detection rate compared to some existing methods.