دانلود مقاله ترجمه شده فناوری اطلاعاتدانلود مقاله ترجمه شده مهندسی کامپیوترمقالات ترجمه شده 2016

مقاله ترجمه شده درباره بهبود پیشنهاد برتر k با رابطه مندی اعتماد کننده و مورد اعتماد در شبکه اعتماد کاربر – سال 2016


مشخصات مقاله:


عنوان فارسی مقاله:

بهبود پیشنهاد برتر k با رابطه مندی اعتماد کننده و مورد اعتماد در شبکه اعتماد کاربر


عنوان انگلیسی مقاله:

Improving top-K recommendation with truster and trustee relationship in user trust network


کلمات کلیدی مقاله:

سیستم توصیه و پیشنهاد، یادگیری رده بندی، شبکه اجتماعی


مناسب برای رشته های دانشگاهی زیر:

مهندسی کامپیوتر و مهندسی فناوری اطلاعات


مناسب برای گرایش های دانشگاهی زیر:

اینترنت و شبکه های گسترده و مهندسی نرم افزار


وضعیت مقاله انگلیسی و ترجمه:

مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.


فهرست مطالب:

چکیده

1-مقدمه

2- آثار مربوطه

1-2 فیلتر همکاری آمیز سنتی

2-2 سیستم توصیه کننده اجتماعی

3-2 سیستم توصیه کننده جهت گیری رده بندی kتراز اول

4-2 سیستم توصیه اتجامعی با جهت گیری رده بندی kتراز اول

3- توصیف مسئله

4- روش

1-4 اصول مبانی: مدل پلاکت-لووسی

2-4 مدل سازی رده بندی

3-4 مدل سازی اعتماد

4-4 مدل یکپارچه

5-تحلیل پیچیدگی

6- آزمایشات

1-6 مجموعه داده ها

2-6 پروتکل آزمایشی

3-6 متریک ارزیابی

4-6 رقبا

5-6 تحلیل عملکرد

6-6 تاثیر پارامتر های و

7-6 تحلیل ابعاد

7-نتیجه گیری و اثر آتی


قسمتی از مقاله انگلیسی و ترجمه آن:

Abstract

Due to the data sparsity problem, social network information is often additionally used to improve the performance of recommender systems. While most existing works exploit social information to reduce the rating prediction error, e.g., RMSE, a few had aimed to improve the top-k ranking prediction accuracy. This paper proposes a novel top-k ranking oriented recommendation method, TRecSo, which incorporates social information into recommendation by modeling two different roles of users as trusters and trustees while considering the structural information of the network. Empirical studies on real-world datasets demonstrate that TRecSo leads to a remarkable improvement compared with previous methods in top-k recommendation.

چکیده

به خاطر مسئله کمبود داده ها، اطلاعات شبکه اجتماعی اغلب به طور اضافی به کار می رود تا عملکرد سیستم های پیشنهاد دهنده را بهبود بخشد. در حالی که اکثر کارهای موجود به بهره گیری از اطلاعات اجتماعی برای کاهش رتبه بندی خطای پیش بینی، از جمله آر.ام.اس.ایی می پردازند، هدف تعداد کمی از آنها بهبود دقت پیش بین رده بندی k برتر می باشد. این مقاله روش جدید پیشنهاد دهی مبتنی بر رده بندی k برتر، TRecSo مطرح می کند که اطلاعات اجتماعی را در این پشنهاد شامل می سازد و دو نقش مختلف کاربران به عنوان اعتماد کننده و مورد اعتماد مدل سازی می کند ضمن آنکه اطلاعات ساختاری شبکه را در نظر می گیرد. مطالعات تجربی درباره پایگاه داده های حقیقی نشان می دهند که TRecSo منجر به بهبود قابل ملاحظه در مقایسه با روش های دیگر در پیشنهاد k برتر می گردد.


 

دانلود رایگان مقاله انگلیسی

خرید ترجمه مقاله

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا