دانلود رایگان مقاله شاخص توزیع شده جغرافیایی با حمایت از ساخت و نگهداری مدل مشترک جهانی – سال 2019
مشخصات مقاله:
عنوان فارسی مقاله:
یک شاخص توزیع شده جغرافیایی با حمایت از ساخت و نگهداری مدل مشترک جهانی
عنوان انگلیسی مقاله:
PeerAppear: A distributed geospatial index supporting collaborative world model construction and maintenance
کلمات کلیدی مقاله:
نظیر به نظیر، شاخص توزیع شده، جستجوی مبتنی بر مکان، شبکه جایگذاشت، شاخص جغرافیایی، ارتباط بصری
مناسب برای رشته های دانشگاهی زیر:
مهندسی فناوری اطلاعات – مهندسی کامپیوتر – جغرافیا
مناسب برای گرایش های دانشگاهی زیر:
شبکه های کامپیوتری
وضعیت مقاله انگلیسی و ترجمه:
مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF با کلیک بر روی دکمه آبی، دانلود نمایید. برای ثبت سفارش ترجمه نیز روی دکلمه قرمز رنگ کلیک نمایید. سفارش ترجمه نیازمند زمان بوده و ترجمه این مقاله آماده نمیباشد و پس از اتمام ترجمه، فایل ورد تایپ شده قابل دانلود خواهد بود.
فهرست مطالب:
Outline
Highlights
Abstract
Keywords
۱٫ Introduction
۲٫ Related work
۳٫ PeerAppear middleware overview
۴٫ Peer-to-peer distributed geospatial indexing
۵٫ Performance evaluation
۶٫ Conclusion and future work
References
قسمتی از مقاله انگلیسی:
Abstract
This paper addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale maps and models. These maps and models support numerous activities including navigation, visual localization, persistent surveillance, and hazard or disaster detection. We approach a solution through the creation of PeerAppear, a location-aware framework for peer-to-peer indexing, search and retrieval. Due to the dynamic nature of the world, the problem of constructing and maintaining relevant world-scale models generally requires significant effort to be spent on mapping. PeerAppear offers a decentralized solution which enables the leveraging of collaborative effort through the implementation of a peer-to-peer middleware framework which automates the indexing and sharing of sensed geospatial information captured and stored in the local repositories of participants. The PeerAppear network achieves scale through a Kademlia-like overlay network which indexes data based on location by adapting Google’s S2 hierarchical geographic segmentation scheme to a globally addressable distributed geographic table. Our communications primitives allow search queries to be formed and executed, enabling the discovery of information published in a specified geographic area. An evaluation of the framework is presented demonstrating excellent retrievability of published data, logarithmic efficiency and global scalability.
1. Introduction
In recent decades our portable electronic devices have gained significant awareness of their environments through the inclusion of an array of new sensors. The prevalence of these sensors has been spurred by miniaturization and massive declines in cost, with many chips now including a miniature array of various sensors in a single inexpensive package. Most modern smart phones include multiple imaging sensors, an accelerometer, gyroscope, magnetometer, barometer, light sensor, microphones, GPS receiver, and various RF transceivers. This leads to unprecedented awareness of the local environment and the sensor’s position in it, which can be exploited for visual [1], magnetic [2], and WiFi [3] mapping applications. With significant adoption of these devices occurring within the United States [4] and world-wide [5], the aggregate reach of these sensors and associated mapping capabilities is rapidly approaching global scale, thereby offering the potential for systems supporting the collaborative construction of world-scale maps and models. However, the realization of such a system must address three primary challenges.