دانلود رایگان مقاله رفتار لرزه ای دیوارهای سنگ تراشی مقاوم سازی شده با تکنیک centercore – سال 2021
مشخصات مقاله:
عنوان فارسی مقاله:
رفتار لرزه ای دیوارهای سنگ تراشی مقاوم سازی شده با تکنیک centercore: یک مطالعه عددی
عنوان انگلیسی مقاله:
Seismic behavior of masonry walls retrofitted by centercore technique: A numerical study
سال انتشار مقاله:
2021
کلمات کلیدی مقاله:
سیمان، خاکستر پرواز کنید، واکنش پذیری، آبرسانی، واکنش پوزولانی، مدل سازی ترمودینامیکی
مناسب برای رشته های دانشگاهی زیر:
مهندسی عمران
مناسب برای گرایش های دانشگاهی زیر:
مدیریت ساخت، زلزله و سازه
وضعیت مقاله انگلیسی و ترجمه:
مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF با کلیک بر روی دکمه آبی، دانلود نمایید. برای ثبت سفارش ترجمه نیز روی دکلمه قرمز رنگ کلیک نمایید. سفارش ترجمه نیازمند زمان بوده و ترجمه این مقاله آماده نمیباشد و پس از اتمام ترجمه، فایل ورد تایپ شده قابل دانلود خواهد بود.
فهرست مطالب:
Abstract
Keywords
Nomenclature
1. Introduction
2. Finite element modeling
2.1. Main features
2.2. FEM modeling calibration
3. Parametric study
4. Results
4.1. Ultimate ductility factor calculation
4.2. Effect of centercore retrofitting on walls ultimate strength and ductility
4.3. Walls ultimate strength and ductility factor
4.4. Effect of applied surcharge on walls shear resistance
4.5. Effect of mortar shear strength on walls shear resistance
4.6. Effect of centercore anchorage on walls shear resistance and ductility
4.7. Effective stiffness of the wall,
5. Analytical calculation to obtain walls shear resistance
5.1. Walls bed-joint shear strength,
5.2. Rocking strength, , for walls retrofitted with centercores not anchored to the foundation
5.3. Rocking strength, , for walls retrofitted with centercores anchored to the foundation
6. Shear resistance modification factor,
7. Walls lateral displacement at the formation of the first significant crack,
8. Summary and conclusions
Ethical statement
Funding body
CRediT authorship contribution statement
Declaration of Competing Interest
References
قسمتی از مقاله انگلیسی:
ABSTRACT
Thermodynamic models for the hydration of ordinary portland cement (OPC) typically predict the composition of the resulting pore solution and the hydrates well. However, predictions for cementitious systems containing OPC and supplementary cementitious materials (SCM) are more challenging. The bulk chemical composition of fly ash does not sufficiently reflect the reactive portion of the material, as the crystalline components of fly ash do not generally react in cementitious systems. Thermodynamic modeling inputs using only the bulk chemical composition of fly ash overestimate the extent of both pozzolanic and hydraulic reactions. Two additional approaches are presented to overcome this limitation. In the first approach, the maximum reactive fraction of fly ash is computed by multiplying each bulk phase of the fly ash by a degree of reaction (DoR*) that is measured experimentally through calorimetric methods. In the second approach, the reactive (glass) fraction of the fly ash is determined to calculate its reactivity. In this alternative approach, the fraction of crystalline oxides measured using quantitative x-ray diffraction (QXRD) is subtracted from bulk oxide content determined using x-ray fluorescence (XRF) to establish a degree of reaction for each phase (DoRph*) to be used in the determination of the thermodynamic modeling inputs. Thermodynamic modeling predictions substantially improve by incorporating fly ash reactivity into the calculations using either the DoR* or DoRph*. The calculation of the reactive phases of fly ash using QXRD and XRF data serve as a potential alternative to the current calorimetric methods to calculate reactivity.