-دانلود مقاله ترجمه شده پزشکیدانلود مقاله ترجمه شده مهندسی پزشکیمقالات ترجمه شده 2019

ترجمه مقاله شبکه های عصبی پیچشی نیروی دوگانه برای تقسیم بندی دقیق تومور مغزی – سال 2019


 

مشخصات مقاله:

 


 

عنوان فارسی مقاله:

شبکه های عصبی پیچشی نیروی دوگانه برای تقسیم بندی دقیق تومور مغزی

عنوان انگلیسی مقاله:

Dual-force convolutional neural networks for accurate brain tumor segmentation

کلمات کلیدی مقاله:

تقسیم‌بندی تومور مغزی، شبکه نیروی دوگانه، شبکه عصبی پیچشی، توزیع برچسب، پس از پردازش

مناسب برای رشته های دانشگاهی زیر:

مهندسی پزشکی و پزشکی

مناسب برای گرایش های دانشگاهی زیر:

مغز و اعصاب، سایبرنتیک، پردازش تصاویر پزشکی

وضعیت مقاله انگلیسی و ترجمه:

مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.


فهرست مطالب:

چکیده
1. پیشگفتار
2. کارهای مربوطه
2.1. معماری‌های CNN
2.2. روش‌های پس از پردازش
3. شبکه‌های نیروی دوگانه
3.1. مرور مختصری از خطوط پایه
3.2. DeepMedic چند سطحی
3.3. شبکه‌های نیروی دوگانه
3.4. تابع زیان مبتنی بر توزیع برچسب
3.5. پس از پردازش
4. آزمایش‌ها
4.1. مجموعه داده‌ها
4.2. جزئیات پیاده‌سازی
4.3. معیارهای ارزیابی
4.4. مقایسه عملکرد بین DeepMedic و MLDeepMedic
4.5. اثربخشی روش پس از پردازش مبتنی بر DFN و MLP
4.6. مقایسه با پیشرفته‌ترین روش‌ها
4.7. تجزیه و تحلیل پیچیدگی
5. نتیجه‌گیری


قسمتی از مقاله انگلیسی و ترجمه آن:

Abstract

Brain tumor segmentation from Magnetic Resonance Imaging scans is vital for both the diagnosis and treatment of brain cancers. It is widely accepted that accurate segmentation depends on multi-level information. However, exiting deep architectures for brain tumor segmentation fail to explicitly encourage the models to learn high-quality hierarchical features. In this paper, we propose a series of approaches to enhance the quality of the learnt hierarchical features. Our contributions incorporate four aspects. First, we extend the popular DeepMedic model to Multi-Level DeepMedic to make use of multi-level information for more accurate segmentation. Second, we propose a novel dual-force training scheme to promote the quality of multi-level features learnt from deep models. It is a general training scheme and can be applied to many exiting architectures, e.g., DeepMedic and U-Net. Third, we design a label distribution-based loss function as an auxiliary classifier to encourage the high-level layers of deep models to learn more abstract information. Finally, we propose a novel Multi-Layer Perceptron-based post-processing approach to refine the prediction results of deep models. Extensive experiments are conducted on two most recent brain tumor segmentation datasets, i.e., BRATS 2017 and BRATS 2015 datasets. Results on the two databases indicate that the proposed approaches consistently promote the segmentation performance of the two popular deep models.

چکیده

تقسیم‌بندی تومور مغزی از اسکن‌های تصویربرداری رزونانس مغناطیسی، برای هر دوی تشخیص و درمان سرطان مغزی، حیاتی است. به طور گسترده‌ای پذیرفته شده است که تقسیم‌بندی دقیق بستگی به اطلاعات چند-سطحی دارد. با این حال، معماری‌های عمیق موجود برای تقسیم‌بندی تومور مغزی موفق به تشویق صریح مدل‌ها به یادگیری ویژگی‌های سلسله مراتبی با کیفیت بالا نمی‌شوند. در این مقاله، مجموعه‌ای از رویکردها را برای افزایش کیفیت ویژگی‌های سلسله مراتبی شناخته شده ارائه می‌دهیم. نقش ما ادغام چهار جنبه است. اولا، به منظور استفاده از اطلاعات چند-سطحی برای تقسیم‌بندی دقیق‌تر، مدل محبوب DeepMedic را به Multi-Level DeepMedic توسعه می‌دهیم. دوما، طرحواره آموزشی نیروی دوگانه جدیدی را برای ارتقاء کیفیت ویژگی‌های چند-سطحی آموخته شده از مدل‌های عمیق ارائه می‌دهیم. این طرحواره، طرح آموزشی کلی است و می‌توان آن را در بسیاری از معماری‌های موجود، از قبیل DeepMedic و U-Net اعمال کرد. سوما، یک تابع زیان مبتنی بر توزیع برچسب را به عنوان رده‌بندی کننده کمکی برای تشویق لایه‌های سطح بالای مدل‌های عمیق به یادگیری اطلاعات انتزاعی‌تر طراحی می‌کنیم. در نهایت، یک رویکرد جدید پس از پردازش مبتنی بر ادراک چند-لایه‌ای  را برای اصلاح نتایج پیش‌بینی مدل‌های عمیق پیشنهاد می‌دهیم. آزمایش‌های گسترده‌ای روی دو مورد از جدیدترین مجموعه داده‌های تقسیم‌بندی تومور مغزی، یعنی، BRATS 2017 و BRATS 2015، انجام شده است. نتایج مربوط به این دو مجموعه داده نشان می‌دهند که رویکردهای ارائه شده به طور مداوم عملکرد تقسیم‌بندی دو مدل عمیق محبوب را ارتقا می‌بخشند.


 

دانلود رایگان مقاله انگلیسی

خرید ترجمه مقاله

 


 

نوشته های مشابه

دکمه بازگشت به بالا