ترجمه مقاله بهینه سازی تولید همزمان گرما و برق با ذخیره سازی گرما بر اساس روش پنجره زمانی لغزان – سال 2016
مشخصات مقاله:
عنوان فارسی مقاله:
بهینه سازی تولید همزمان گرما و برق با ذخیره سازی گرما بر اساس روش پنجره زمانی لغزان
عنوان انگلیسی مقاله:
Optimization of combined heat and power production with heat storage based on sliding time window method
کلمات کلیدی مقاله:
تولید همزمان گرما و برق، ذخیره سازی گرما، بهینه سازی، پیش بینی تقاضای گرما، الگوریتم پنجره زمانی لغزان
مناسب برای رشته های دانشگاهی زیر:
مهندسی برق و انرژی
مناسب برای گرایش های دانشگاهی زیر:
تولید، انتقال و توزیع، سیستم های انرژی، فناوری انرژی
وضعیت مقاله انگلیسی و ترجمه:
مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.
فهرست مطالب:
چکیده
1. مقدمه
2. روش ها
2.1. مدل CHP
2.2. روش پنجره زمانی لغزان
2.3. شبیه سازی پیش بینی ها
2.4. ارزیابی و اعتباربخشی این روش
3. نتایج محاسبات
4. اثر عرض پنجره زمانی و اندازه مخزن بر هزینه بهینه
4.1. هزینه بهینه عملیاتی شبکه به عنوان تابعی از عرض پنجره زمانی لغزان
4.2. هزینه عملیات شبکه بهینه به عنوان تابعی از اندازه مخزن
5. اثر اندازه مخزن بر راندمان کلی انرژی
6. بحث و نتیجه گیری
قسمتی از مقاله انگلیسی و ترجمه آن:
Abstract
A combined heat and power (CHP) optimization model with heat storage is proposed to minimize the production cost and to maximize the revenue from power sales based on a sliding time window method. The model can be applied both for operating heat storage optimally and supporting investment planning for a new storage. Heat demand is forecasted based on a weather forecast. Each day the heat demand and power price forecasts are input to a generic CHP optimization model for a several-day time window to obtain a heat storage operation plan. Then only the first day of the plan is implemented with actual power price and heat demand using a single-day optimization model to compute the actual production amount, fuel costs and revenue from power sales. After that, the time window is slid one day forward, and the above-mentioned process is repeated. In the test runs, forecasts for power price and temperature are simulated by disturbing actual (historical) data by the Wiener process (random walk). To evaluate the benefit and validate the proposed method, the results are compared with the no-storage case and the theoretical optimum assuming perfect demand and price forecasts. The results show that the revenue from power sales can be significantly improved. The method is used to evaluate the benefit of different sized storages for the CHP system. Also the effect of the width of the time windows on the performance of the method is evaluated. The model was tested using real-life heat demand data for the city of Espoo in Finland, and NordPool spot market data for power price for a one year time horizon. The results indicate that considering the forecasting uncertainty, 5-day sliding time window method can obtain 90% of the theoretically possible cost savings that can be derived based on perfect forecasts.
چکیده
الگوی بهینه سازی همزمان برق و گرما (CHP) با ذخیره سازی گرما برای کمینه سازی هزینه تولید و بیشینه سازی درآمد از فروش برق بر اساس روش پنجره زمانی لغزان ارائه شده است. این الگو می تواند برای ذخیر سازی گرما به طور بهینه و همچنین پشتیبانی از برنامه ریزی سرمایه گذاری برای ذخیره سازی جدید به کار رود. تقاضای گرما بر اساس پیش بینی وضع هوا پیش بینی می شود. هر روز تقاضای گرما و پیش بینی قیمت برق به عنوان ورودی به مدل کلی بهینه سازی CHP برای پنجره زمانی چند روزه داده می شوند تا برنامه ریزی عملیات ذخیر سازی گرما به دست آید. سپس تنها اولین روز برنامه با قیمت واقعی برق و تقاضای گرما با استفاده از مدل بهینه سازی تک روزه پیاده سازی می شود تا میزان واقعی تولید، هزینه های سوخت و درآمد از فروش برق محاسبه شود. پس از آن، پنجره زمانی یک روز به جلو لغزانده می شود و فرآیند اشاره شده در بالا تکرار می شود. در راه اندازی های آزمایشی، پیش-بینی ها برای قیمت برق و دما با ایجاد اغتشاش در اطلاعات واقعی (تاریخی) از طریق فرآیند وینر (گردش تصادفی) شبیه سازی می شوند. به منظور ارزیابی مزایا و تایید اعتبار روش ارائه شده، نتایج با حالت بدون ذخیره-سازی و حالت بهینه ی نظری با فرض پیش بینی کامل تقاضا و قیمت مقایسه می شوند. نتایج نشان می دهند که درآمد حاصل از فروش برق می تواند به طور قابل توجهی بهتر شود. این روش برای ارزیابی مزایای مخازن با اندازه-های مختلف برای سیستم CHP به کار می رود. همچنین اثر عرض پنجره های زمانی بر عملکرد این روش ارزیابی می شود. این مدل با استفاده از داده های تقاضای گرمای واقعی برای شهر اسپو در فنلاند و داده های بازار معاملات نقدی نوردپول برای قیمت برق در افق زمانی یک سال آزمایش شده است. نتایج نشان می دهند که با در نظر گرفتن عدم قطعیت پیش بینی، روش پنجره زمانی لغزان 5 روزه می تواند به 90 درصد صرفه جویی هزینه ممکن به صورت نظری دست یابد که می تواند بر اساس پیش بینی های کامل به دست آید.