ترجمه مقاله یک سیستم تشخیص نفوذ توزیع شده برای شناسایی حملات DDoS در شبکه اینترنت اشیا با بلاک چین – سال 2022
مشخصات مقاله:
عنوان فارسی مقاله:
عنوان انگلیسی مقاله:
کلمات کلیدی مقاله:
مناسب برای رشته های دانشگاهی زیر:
مهندسی کامپیوتر – مهندسی فناوری اطلاعات
مناسب برای گرایش های دانشگاهی زیر:
امنیت اطلاعات – رایانش ابری – اینترنت و شبکه های گسترده – شبکه های کامپیوتری – مهندسی الگوریتم ها و محاسبات
وضعیت مقاله انگلیسی و ترجمه:
مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.
فهرست مطالب:
چکیده
1. مقدمه
3. مدل ارائه شده ی ما
4. نتایج تجربی و بحث
5. نتیجه گیری
بیانیه ی مشارکت نویسندگی
اعلامیه ی منافع رقابتی
تصدیق
منابع
قسمتی از مقاله انگلیسی و ترجمه آن:
Abstract
The Internet of Things (IoT) is emerging as a new technology for the development of various critical applications. However, these applications are still working on centralized storage architecture and have various key challenges like privacy, security, and single point of failure. Recently, the blockchain technology has emerged as a backbone for the IoT-based application development. The blockchain can be leveraged to solve privacy, security, and single point of failure (third-part dependency) issues of IoT applications. The integration of blockchain with IoT can benefit both individual and society. However, 2017 Distributed Denial of Service (DDoS) attack on mining pool exposed the critical fault-lines among blockchain-enabled IoT network. Moreover, this application generates huge amount of data. Machine Learning (ML) gives complete autonomy in big data analysis, capabilities of decision making and therefore is used as an analytical tool. Thus, in order to address above challenges, this paper proposes a novel distributed Intrusion Detection System (IDS) using fog computing to detect DDoS attacks against mining pool in blockchain-enabled IoT Network. The performance is evaluated by training Random Forest (RF) and an optimized gradient tree boosting system (XGBoost) on distributed fog nodes. The proposed model effectiveness is assessed using an actual IoT-based dataset i.e., BoT-IoT, which includes most recent attacks found in blockchain-enabled IoT network. The results indicate, for binary attack-detection XGBoost outperforms whereas for multi-attack detection Random Forest outperforms. Overall on distributed fog nodes RF takes less time for training and testing compared to XGBoost.
چکیده
اینترنت اشیا به عنوان تکنولوژی جدیدی برای توسعه ی بسیاری از برنامه های کاربردی مورد نیاز ، ظاهر شده است. اگرچه، این برنامه های کاربردی هنوز بر روی معماری ذخیره سازی متمرکز اجرا شده و چالش های کلیدی زیادی از جمله حریم خصوصی، امنیت و نقطه ی آسیب پذیری مرکزی را دارا هستند. اخیرا، فناوری زنجیره های بلوکی به عنوان ستون فقراتی برای توسعه ی برنامه های کاربردی بر پایه ی اینترنت اشیا پدیدار شده است. زنجیره های بلوکی می توانند به منظور حل مشکلات حریم خصوصی، امنیت و نقطه ی آسیب پذیری مرکزی ( ارتباط دهنده ی شخص ثالث) برنامه های کاربردی اینترنت اشیا مورد استفاده قرار گیرند. یکپارچه سازی زنجیره های بلوکی با اینترنت اشیا می تواند برای اشخاص و جامعه سودمند باشد. هرچند، تهاجم نقض سرویس توزیع شده (DDoS) بر استخر استخراج در 2017، خط گسله ای اساسی در میان شبکه ی اینترنت اشیای دارای زنجیره ی بلوکی را نمایان کرد. علاوه بر این، این برنامه اطلاعات بسیار زیادی را تولید می کند. یادگیری ماشینی (ML) به دلیل ارائه ی استقلال کامل در آنالیز داده های بزرگ و قابلیت تصمیم گیری، به عنوان ابزاری تحلیلی استفاده می شود. بنابراین، به منظور پرداختن به چالش هایی که پیشتر ذکر شد، این پژوهش سیستم تشخیص نفوذ توزیع شده ی (IDS) جدیدی با به کارگیری رایانش در مه برای شناسایی تهاجم های DDoS در مقابل استخر استخراج در شبکه ی IoT دارای زنجیره ی بلوکی را ارائه می دهد. عملکرد توسط آموزش الگوریتم جنگل تصادفی (RF) و یک سیستم بهینه شده ی تقویت درخت گرادیان (XGBoost) بر گره های محاسبات مه توزیع شده، مورد سنجش قرار می گیرد. سودمندی مدل ارائه شده در ارزیابی با استفاده از مجموعه ای حقیقی از داده های مبتنی بر IoT، به عبارت دیگر BoT-IoT که شامل تهاجم های اخیر یافت شده در شبکه ی IoT دارای زنجیره ی بلوکی است. نتایج بیان می کنند که XGBoost برای تشخیص حملات باینری و الگوریتم جنگل تصادفی برای شناسایی حملات چندگانه عملکرد بهتری دارند. به طور کلی، در مورد گره های محاسباتی مه توزیع شده، RF نسبت به XGBoost زمان کمتری را برای آموزش و آزمایش به خود اختصاص می دهد.