دانلود مقاله ترجمه شده فناوری اطلاعاتدانلود مقاله ترجمه شده مهندسی کامپیوترمقالات ترجمه شده 2016

ترجمه مقاله بیشینه سازی نفوذ در شبکه های اجتماعی با محدودسازی میزان کاهش نفوذ – سال 2016

 

 


 

مشخصات مقاله:

 


 

عنوان فارسی مقاله:

بیشینه سازی نفوذ در شبکه های اجتماعی با محدودسازی میزان کاهش نفوذ

عنوان انگلیسی مقاله:

Maximizing influence under influence loss constraint in social networks

کلمات کلیدی مقاله:

بیشینه‌سازی نفوذ، کاهش نفوذ، شبکه‌های اجتماعی

مناسب برای رشته های دانشگاهی زیر:

مهندسی کامپیوتر، فناوری اطلاعات

مناسب برای گرایش های دانشگاهی زیر:

اینترنت و شبکه های گسترده، امنیت اطلاعات

وضعیت مقاله انگلیسی و ترجمه:

مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.

 


 

فهرست مطالب:

چکیده

1. مقدمه

2. پژوهش‌های مرتبط انجام شده در این زمینه

2. 1. مسئله بیشینه‌سازی نفوذ

2. 2. روش‌های مسیر گستره نفوذ

3. فرمول‌بندی مسئله

4. روش‌های مورد استفاده

4. 1. غیرعملی بودن الگوریتم‌های حریصانه تخت

4. 2. روش‌های مبتنی بر CSA

4. 3. CSA بهبود یافته: CSA-Q

4. 4. پیچیدگی‌های زمانی و مکانی

5. آزمایش‌ها

5. 1. جایگذاری پارامترها

5. 2. نتایج تجربی

6. نتیجه‌گیری

 


 

قسمتی از مقاله انگلیسی و ترجمه آن:

Abstract
Influence maximization is a fundamental research problem in social networks. Viral marketing, one of its applications, aims to select a small set of users to adopt a product, so that the word-of-mouth effect can subsequently trigger a large cascade of further adoption in social networks. The problem of influence maximization is to select a set of K nodes from a social network so that the spread of influence is maximized over the network. Previous research on mining top-K influential nodes assumes that all of the selected K nodes can propagate the influence as expected. However, some of the selected nodes may not function well in practice, which leads to influence loss of top-K nodes. In this paper, we study an alternative influence maximization problem which is naturally motivated by the reliability constraint of nodes in social networks. We aim to find top-K influential nodes given a threshold of influence loss due to the failure of a subset of R(<K) nodes. To solve the new type of influence maximization problem, we propose an approach based on constrained simulated annealing and further improve its performance through efficiently estimating the influence loss. We provide experimental results over multiple real-world social networks in support. This research will further support practical applications of social networks in various domains particularly where reliability would be a main concern in a system deployment.
1. Introduction
Social networks provide an intuitive representation about individual connections and display interesting behavioral patterns across various populations of users (Wasserman & Faust, 1994). Social network analysis is attracting more and more attention from different research areas and becomes an important tool for developing intelligent systems in recommendation, crowdsourcing service and so on Domingos and Richardson (2001), Zafarani, Abbasi, and Liu (2014), Sun, Lin, and Xu (2015), Zeng et al. (2015).

چکیده
بیشینه‌سازی نفوذ یکی از مسائل بنیادی تحقیقاتی در شبکه‌های اجتماعی به شمار می‌آید. در بازاریابی ویروسی که یکی از کاربردهای این مقوله است، دسته کوچکی از کاربران برای قبول یک محصول انتخاب شده و اثر شفاهی متعاقب آن می‌تواند به پذیرش عظیم این محصول در شبکه‌های اجتماعی منتهی گردد. مسئله بیشینه‌سازی نفوذ، انتخاب مجموعه‌ای متشکل از K گره از یک شبکه اجتماعی به گونه‌ای است که میزان گسترش نفوذ آن در شبکه را به حداکثر مقدار خود برساند. در پژوهش قبلی انجام شده در خصوص استخراج K گره بالای بانفوذ، فرض شده است که تمامی K گره انتخاب شده می‌توانند نفوذ خود را مطابق انتظار گسترش دهند. با این وجود برخی از گره‌های انتخابی در عمل چندان به خوبی عمل نمی‌نمایند که همین مسئله به اتلاف یا کاهش K گره بالای بانفوذ منتهی می‌گردد. در این مقاله، مسئله بیشینه‌سازی نفوذ دیگری را مورد بررسی قرار خواهیم داد که به طور طبیعی محدودیت اطمینان‌پذیری گره‌ها در شبکه‌های اجتماعی، آن را برمی‌انگیزند. هدف ما یافتن K گره بالای بانفوذ می‌باشد که آستانه کاهش نفوذ ناشی از شکست مجموعه‌ای از R (<K) گره را به ما می‌دهد. برای حل گونه جدیدی از مسئله بیشینه‌سازی نفوذ، روشی مبتنی بر انسجام‌بخشی محدود شبیه‌سازی شده را ارائه و عملکرد آن را از طریق برآورد کاهش نفوذ، بیشتر بهبود خواهیم بخشید. برای پشتیبانی بیشتر از این موضوع، نتایج تجربی مربوط به چندین شبکه اجتماعی دنیای واقعی را ارائه می‌نماییم. همچنین این تحقیق از کاربردهای عملی شبکه‌های اجتماعی در حوزه‌های مختلف به ویژه در جاهایی که اطمینان‌پذیری، یکی از دغدغه‌های اصلی در توسعه یک سیستم است، نیز پشتیبانی خواهد نمود.
1. مقدمه
شبکه‌های اجتماعی، نمایشی بصری در خصوص ارتباطات فردی ارائه نموده و الگوهای رفتاری جالب توجه در جمعیت‌های مختلف کاربران را نمایش می‌دهد (واسرمن و فاوست، 1994). تحلیل شبکه اجتماعی توجه بیشتر حوزه‌های مختلف را به خود معطوف داشته و به ابزاری مهم برای توسعه سیستم‌های هوشمند در توصیه، خدمات انبوه‌سپاری و غیره مبدل شده است (دومینگوز و ریچاردسون (2001)، زعفرانی، عباسی و لیو (2014)، سان، لین و خو (2015)، زنگ و همکاران (2015)).

 


 

دانلود رایگان مقاله انگلیسی

خرید ترجمه مقاله

 


 

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا