دانلود مقاله ترجمه شده فناوری اطلاعاتدانلود مقاله ترجمه شده فناوری اطلاعات و ارتباطاتدانلود مقاله ترجمه شده مهندسی کامپیوترمقالات ترجمه شده 2017

ترجمه مقاله ST-Hash: یک شاخص زمانی و مکانی کارآمد برای داده های خط سیر انبوه در پایگاه داده NoSQL – سال 2017


 

مشخصات مقاله:

 


 

عنوان فارسی مقاله:

ST-Hash: یک شاخص زمانی و مکانی کارآمد برای داده های خط سیر انبوه در پایگاه داده NoSQL

عنوان انگلیسی مقاله:

ST-hash: An efficient spatiotemporal index for massive trajectory data in a NoSQL database

کلمات کلیدی مقاله:

شاخص زمانی و مکانی، پرس و جوی برد زمانی و مکانی، داده های خط سیر، NoSQL، ST-Hash

مناسب برای رشته های دانشگاهی زیر:

مهندسی فناوری اطلاعات، فناوری اطلاعات و ارتباطات، مهندسی کامپیوتر

وضعیت مقاله انگلیسی و ترجمه:

مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.

 


 

فهرست مطالب:

چکیده

1-مقدمه

2- کارهای مرتبط

3- روش شاخص گذاری ST-Hash

A-کد باینری یک نقطه خط سیر

B- رشته Base64 یک نقطه خط سیر

4- رابط پرس و جو برای شاخص ST-Hash

A-جستار نقطه زمانی و مکانی

B- جستار برد زمانی و مکانی

C- جستار دایره زمانی و مکانی

D- رابط جستار مبتنی بر وب سرویس

5- نتایج عملکرد و بحث

A-طرح ذخیره سازی داده های خط سیر در پایگاه داده MongoDB

B- مقایسه عملکرد براساس جستارهای برد زمانی و مکانی

C- مقایسه عملکرد براساس جستارهای دایره زمانی و مکانی

D- مقیاس پذیری روش شاخص گذاری ST-Hash

6- نتیجه گیری ها

 


 

قسمتی از مقاله انگلیسی و ترجمه آن:

Abstract
With the development of positioning technologies and the increasing popularity of location-aware devices, large volumes of trajectory data have been accumulated. However, efficient management and access to massive trajectory data remains a big challenge. The emerging NoSQL database has provided a promising solution for this challenge. But most of the current NoSQL databases do not support direct spatiotemporal indexing of massive trajectory data. This paper presents a novel trajectory indexing method to accelerate time-consuming spatiotemporal queries of massive trajectory data. This method extends the widely-used GeoHash algorithm to satisfy the requirements for both high-frequent updates and common trajectory query operations, e.g. exact point query and spatiotemporal range query. This ST-Hash index was implemented and evaluated in a NoSQL database (MongoDB). Experimental results show that this proposed ST-Hash index can greatly improve the query performance and exhibits robust performance scalability over different input data sizes.

چکیده
با توسعه تکنولوژیهای موقعیت یابی و افزایش محبوبیت دستگاههای آگاه از موقعیت، حجم های بزرگی از داده های خط سیر جمع آوری شده اند. به هر حال، مدیریت کارآمد و موثر و دسترسی به داده های خط سیر انبوه به عنوان یک چالش بزرگ باقی می ماند. پایگاه داده (دیتابیس) NoSQL نوظهور یک راهکار نویدبخش برای این چالش فراهم کرده است. اما اغلب پایگاه های داده NoSQL کنونی شاخص گذاری زمانی و مکانی مستقیم داده های خط سیر انبوه را پشتیبانی نمی کنند. این مقاله یک روش شاخص گذاری خط سیر نوین برای تسریع جستارهای (پرس و جوهای) زمانی و مکانی زمان بر داده های خط سیر انبوه ارائه می کند. این روش الگوریتم به طور گسترده مورد استفاده ژئوهش را جهت برآورده سازی الزامات برای هردوی آپدیت های بسیار مکرر و عملیاتهای پرس و جوی خط-سیر یعنی پرس و جوی نقطه ای دقیق و پرس و جوی برد (طیف) زمانی و مکانی بسط می دهد. این شاخص ST-Hash در پایگاه داده NoSQL (MongoDB) پیاده سازی شده و مورد ارزیابی قرار گرفته است. نتایج تجربی نشان می دهند که شاخص ST-Hash پیشنهادی می تواند به طور گسترده عملکرد پرس و جو (جستار) را بهبود ببخشد و مقیاس پذیری عملکرد نیرومند روی داده های ورودی با اندازه های مختلف نشان دهد.

 


 

دانلود رایگان مقاله انگلیسی

خرید ترجمه مقاله

 


 

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا