ترجمه مقاله مثبت فکر کنید – سال 2022
مشخصات مقاله:
عنوان فارسی مقاله:
عنوان انگلیسی مقاله:
Think positive: An interpretable neural network for image recognition
کلمات کلیدی مقاله:
مناسب برای رشته های دانشگاهی زیر:
مهندسی کامپیوتر – مهندسی پزشکی – پزشکی
مناسب برای گرایش های دانشگاهی زیر:
پردازش تصاویر پزشکی – هوش مصنوعی – مهندسی الگوریتم ها و محاسبات – اپیدمیولوژی
وضعیت مقاله انگلیسی و ترجمه:
مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.
فهرست مطالب:
چکیده
1-مقدمه
2-روش
3- نتایج
4-نقاط ضعف مطالعه ما
6-نتیجه گیری
منابع
قسمتی از مقاله انگلیسی و ترجمه آن:
Abstract
The COVID-19 pandemic is an ongoing pandemic and is placing additional burden on healthcare systems around the world. Timely and effectively detecting the virus can help to reduce the spread of the disease. Although, RT-PCR is still a gold standard for COVID-19 testing, deep learning models to identify the virus from medical images can also be helpful in certain circumstances. In particular, in situations when patients undergo routine X-rays and/or CT-scans tests but within a few days of such tests they develop respiratory complications. Deep learning models can also be used for pre-screening prior to RT-PCR testing. However, the transparency/interpretability of the reasoning process of predictions made by such deep learning models is essential. In this paper, we propose an interpretable deep learning model that uses positive reasoning process to make predictions. We trained and tested our model over the dataset of chest CT-scan images of COVID-19 patients, normal people and pneumonia patients. Our model gives the accuracy, precision, recall and F-score equal to 99.48%, 0.99, 0.99 and 0.99, respectively.
چکیده
پاندمی COVID-19 همچنان در حال پیشرفت است و هزینه اضافه ای بر سیستمهای بهداشت و درمان در سراسر دنیا تحمیل کرده است. تشخیص به موقع و موثر این ویروس میتواند به کاهش انتشار بیماری کمک کند. گرچه RT-PCR همچنان استانداردی طلایی برای تست COVID-19 بشمار میرود، اما مدلهای یادگیری عمیق برای شناسایی ویروس از روی تصاویر پزشکی نیز در شرایط خاص مفید هستند؛ بویژه در موقعیتهایی که بیماران متحمل آزمایشات پرتو-X و یا CT-اسکنهای روتین میشوند ولی در مدت چند روز پس از این آزمایشات عوارض تنفسی را تجربه میکنند. همچنین مدلهای یادگیری عمیق جهت پیش-غربالگری قبل از آزمایش RT-PCR استفاده میشوند. ولی با اینحال، شفافیت/ قابلیت تفسیر فرایند استدلال پیش بینی های صورت گرفته بوسیله چنین مدلهای یادگیری ضرورت دارد. ما در این مقاله، یک الگوی یادگیری عمیق قابل تفسیر پیشنهاد میکنیم که از فرایند استدلال مثبت جهت پیش بینی استفاده میکند. ما مدل خودمان را آموزش داده و آن را بر روی یک مجموعه از داده های تصویری CT-اسکن قفسه سینه بیماران COVID-19، افراد سالم، و بیماران پنومونی، آزمایش کردیم. صحت، دقت، یادآوری و امتیازF- مدل ما به ترتیب 48/99 %، 99/0، 99/، و 99/0 بودند.