-دانلود مقاله ترجمه شده فناوری اطلاعاتدانلود مقاله ترجمه شده مهندسی صنایعدانلود مقاله ترجمه شده مهندسی کامپیوترمقالات ترجمه شده 2018

ترجمه مقاله شناسایی سناریوهای بدترین حالت کاربر برای آزمایش عملکرد برنامه های وب با استفاده از مدل های بارگذاری زنجیره ای مارکوف – سال 2018


 

مشخصات مقاله:

 


 

عنوان فارسی مقاله:

شناسایی سناریوهای بدترین حالت کاربر برای آزمایش عملکرد برنامه های وب با استفاده از مدل های بارگذاری زنجیره ای مارکوف

عنوان انگلیسی مقاله:

Identifying worst-case user scenarios for performance testing of web applications using Markov-chain workload models

کلمات کلیدی مقاله:

آزمایش کارکرد، زنجیره‌ی مارکوف، الگوریتم‌های ژنتیک، الگوریتم‌های جستجوی گراف

مناسب برای رشته های دانشگاهی زیر:

مهندسی کامپیوتر و مهندسی فناوری اطلاعات و مهندسی صنایع

مناسب برای گرایش های دانشگاهی زیر:

مهندسی الگوریتم ها و محاسبات

وضعیت مقاله انگلیسی و ترجمه:

مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.


فهرست مطالب:

چکیده
1. مقدمه
2. استفاده از زنجیره های مارکوف برای مدل سازی حجم کار
3. تولید حجم کار
4. کار مرتبط
5. شناسایی بدترین سناریو کاربری
5-1 انجام معیار ارزیابی اولیه
5-2 به کارگیری زمان تفکر
5-3 روش 1: محاسبه بدترین مسیر با استفاده از الگوریتم های جستجوی گراف
5-4 روش 2: محاسبه بدترین مسیر نزدیک با استفاده از الگوریتم های ژنتیک
5-5 پشتیبانی از ابزار
6. اعتبارسنجی و ارزیابی تجربی
7. نتیجه‌گیری
منابع


قسمتی از مقاله انگلیسی و ترجمه آن:

Abstract

The poor performance of web-based systems can negatively impact the profitability and reputation of the companies that rely on them. Finding those user scenarios which can significantly degrade the performance of a web application is very important in order to take necessary countermeasures, for instance, allocating additional resources. Furthermore, one would like to understand how the system under test performs under increased workload triggered by the worst-case user scenarios. In our previous work, we have formalized the expected behavior of the users of web applications by using probabilistic workload models and we have shown how to use such models to generate load against the system under test. As an extension, in this article, we suggest a performance space exploration approach for inferring the worst-case user scenario in a given workload model which has the potential to create the highest resource utilization on the system under test with respect to a given resource. We propose two alternative methods: one which identifies the exact worst-case user scenario of the given workload model, but it does not scale up for models with a large number of loops, and one which provides an approximate solution which, in turn, is more suitable for models with a large number of loops. We conduct several experiments to show that the identified user scenarios do provide in practice an increased resource utilization on the system under test when compared to the original models.

چکیده

عملکرد ضعیف سیستم‌های مبتنی بر وب می‌تواند بر کسب سود و شهرت شرکت‌هایی که از آنها استفاده می‌کنند، اثرات منفی ایجاد نماید. مشخص نمودن این سناریوهای مورد استفاده که می‌توانند به‌صورت قابل‌توجهی موجب کاهش عملکرد برنامه‌های کاربردی وب شوند، به‌منظور لحاظ کردن نیاز به انجام اقدامات متقابل از جمله اختصاص دادن منابع اضافی بسیار مهم می‌باشند. علاوه بر این، درک چگونگی سیستم برای انجام دادن آزمایش تحت افزایش حجم کاری تحریک‌شده از طریق بدترین حالت سناریوهای مورد استفاده، مورد علاقه‌ی محققین قرار گرفته است. ما در پژوهش پیشین، رفتار پیش‌بینی‌شده‌ی کاربران برنامه‌های کاربردی وب را با استفاده مدل‌های حجمی کاری احتمالی بررسی نمودیم و چگونگی استفاده از اینگونه مدل‌ها را جهت تولید بار در مقابل سیستم تحت آزمایش نشان دادیم. به منظور توسعه‌ این پژوهش، ما دیدگاه شناسایی فضای عملکردی را برای حدس زدن بدترین حالت سناریوی کاربر در یک مدل حجم کاری مشخص پیشنهاد می‌نماییم که برای ایجاد کردن استفاده از بزرگترین منابع بر روی سیستم تحت آزمایش با توجه به منبع مشخص دارای پتانسیل می‌باشد. ما دو روش جایگزین نیز پیشنهاد می‌دهیم: در یکی از آنها، به‌صورت دقیق بدترین حالت سناریوی کاربر را با توجه به مدل حجم کاری مشخص شناسایی می‌کنیم، اما این حالت برای مدل‌هایی با تعداد زیادی حلقه‌ها موجب افزایش منابع سیستم نمی‌شود، روش دیگر یک حل تقریبی را ارائه می‌دهد که به‌نوبه‌ی خود برای مدل‌هایی با تعداد زیاد حلقه‌ها، بسیار مناسب است. ما جهت نشان دادن سناریوهای مورد استفاده‌ی شناخته‌شده که در عمل یک منبع افزایشی استفاده‌کننده بر روی سیستم تحت آزمایش را در مقایسه با مدل‌های اصلی فراهم می‌کنند، چندین آزمایش انجام می‌دهیم.


 

دانلود رایگان مقاله انگلیسی

خرید ترجمه مقاله

 


 

نوشته های مشابه

دکمه بازگشت به بالا