دانلود مقاله ترجمه شده مدیریتدانلود مقاله ترجمه شده مهندسی پزشکیمقالات ترجمه شده 2021

ترجمه مقاله تحلیل مدیریت ارتباط با مشتری بر روی بیماران سرپایی در یک بیمارستان بیماری های عفونی در چین با استفاده از مدل تازگی- فراوانی- ارزش پولی نسبت دارویی- سال 2021


 

مشخصات مقاله:

 


 

عنوان فارسی مقاله:

تحلیل مدیریت ارتباط با مشتری بر روی بیماران سرپایی در یک بیمارستان بیماری های عفونی در چین با استفاده از مدل تازگی- فراوانی- ارزش پولی نسبت دارویی

عنوان انگلیسی مقاله:

Customer relationship management analysis of outpatients in a Chinese infectious disease hospital using drug-proportion recency-frequency-monetary model

کلمات کلیدی مقاله:

CRM – مدل dRFM – k- میانگین – بیمارستان های مربوط به بیماری های عفونی – انواع بیماران

مناسب برای رشته های دانشگاهی زیر:

مدیریت – پزشکی

مناسب برای گرایش های دانشگاهی زیر:

مدیریت منابع انسانی – مدیریت پروژه – انفورماتیک پزشکی

وضعیت مقاله انگلیسی و ترجمه:

مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.


فهرست مطالب:

چکیده
1. مقدمه
2. داده ها و روش ها
3. نتایج
4. بحث
5. محدودیت ها و تحقیقات آینده
6. نتیجه گیری
منابع


قسمتی از مقاله انگلیسی و ترجمه آن:

Abstract

Background: Identifying the patient types with different economic values can be useful for hospital development. Objective: This work uses the theory of customer relationship management (CRM) to analyze the outpatients in the hospital for infectious diseases in Shanghai, China. Methods: A total of 2,271,020 data elements of outpatients in the research unit between August 2009 and December 2019 were extracted, analyzed and cleaned to obtain 171,107 valid data elements (1 element per person). The main diseases were viral hepatitis B (VHB) and acquired immunodeficiency syndrome (AIDS), and the average percentage of drug expenditure was 80.39 %. We innovatively expanded the classic RFM (R: recency, F: frequency, M: monetary) model in CRM to the dRFM (d: percentage of drug expenditure) model. We selected the best clustering algorithm from the K-means, Kohonen and two-step clustering methods to find the optimal model to distinguish the types of patients with different economic values and the best decision-making algorithm from the C5.0, CART classification regression tree, CHAID and QUEST algorithms to verify the model. Results: After performing two rounds of K-means clustering analysis on three models: RFM, RFM + dRFM and dRFM, and 97,855 data elements were retained. The RFM + dRFM model was the optimal model, clustering the patients into 3 types: potential patients (24.2 %) to be retained, with a high drug expenditure and the last visit in more than 19.06 months, high-value patients (24.5 %) to be attracted, with the last visit in about 6.66 months; basal patients (51.3 %) to be kept, with the last visit in about 3.7 months. The model was then verified using the C5.0 decision tree algorithm with an accuracy rate of 99.97 %. Conclusion: This objective CRM analysis of the patients in the hospital for infectious diseases using the dRFM model accurately identified different types of patients, providing an objective and effective basis for hospital management.

چکیده

زمینه: تشخیص انواع بیماران با ارزش های اقتصادی مختلف می تواند برای توسعۀ بیمارستان مفید باشد.
هدف: این تحقیق از تئوری مدیریت ارتباط با مشتری (CRM) جهت تحلیل بیماران سرپایی در بیمارستان بیماری های عفونی در شانگهای چین استفاده می کند.
روش ها: کلا 2,271,020 عنصر داده از بیماران سرپایی در واحد تحقیقاتی بین آگوست 2009 و دسامبر 2019 برای به دست آوردن 171,107 عنصر دادۀ معتبر (1 عنصر به ازای هر فرد) استخراج، تحلیل و شفاف سازی شد. بیماری های اصلی، بیماری ویروسی هپاتیت B (VHB) و سندرم نقص ایمنی اکتسابی (ایدز) بودند و درصد میانگین هزینۀ دارو 80.39 % بود.
ما مدل RFM کلاسیک (R: تازگی، F: فراوانی، M: ارزش پولی) را در CRM به طور خلاقانه به مدل dRFM (d: هزینه های دارویی) توسعه دادیم و بهترین الگوریتم خوشه بندی را از روش های K میانگین، روش های کوهونن و خوشه بندی دو مرحله ای برای یافتن مدل بهینه جهت تشخیص انواع بیماران با ارزش های اقتصادی متفاوت و بهترین الگوریتم تصمیم گیری را از درخت رگرسیون دسته بندی C5.0, CART، الگوریتم های CHAID و QUEST برای تأیید مدل انتخاب کردیم.


 

دانلود رایگان مقاله انگلیسی

خرید ترجمه مقاله

 


 

نوشته های مشابه

دکمه بازگشت به بالا