دانلود مقاله ترجمه شده پزشکیدانلود مقاله ترجمه شده مهندسی پزشکیمقالات ترجمه شده 2017

ترجمه مقاله تشخیص زود هنگام حملات صرع با استفاده از ثبت نوری و الکتریکی – سال 2017


 

مشخصات مقاله:

 


 

عنوان فارسی مقاله:

تشخیص زود هنگام حملات صرع با استفاده از ثبت نوری و الکتریکی

عنوان انگلیسی مقاله:

Detecting Epileptic Seizures in Advance Using Optical and Electrical Recordings

کلمات کلیدی مقاله:

صرع، تشنج، تشخیص، پیش بینی، fNIRS ، EEG، چند حالته

مناسب برای رشته های دانشگاهی زیر:

مهندسی پزشکی و پزشکی

مناسب برای گرایش های دانشگاهی زیر:

مغز و اعصاب، بیوالکتریک

وضعیت مقاله انگلیسی و ترجمه:

مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.

 


 

فهرست مطالب:

چکیده

1) مقدمه

2) ثبت EEG و fNIRS

3) روش

4) نتایج

5) نتیجه‌گیری و کار‌های آینده

 


 

قسمتی از مقاله انگلیسی و ترجمه آن:

V. CONCLUSIONS AND FUTURE WORK
Even though results from a case-study are not conclusive, Table 2 suggests that adding fNIRS features to an EEG-based detector will considerably improve its performance. Furthermore, from Table 3 and Fig. 5 we confirmed that information contained within fNIRS can help to detect seizures much earlier. Given these promising results, our future work will be to try the same approach with others classifiers on a larger sample. We will also focus on extracting new and better classification features out of the fNIRS signals and combine them with features extracted from EEG recordings. One limitation of our work is the lack of implementation of a feature selection algorithm, although it may not be needed, given the promising results using only the amplitude of signals as features. The choice of optimal parameters in our machine learning approaches, such as SVM kernel type and its associated parameters, number of neurons in the ANN hidden layer as well as a feature selection process will be tackled in future work.

5) نتیجه‌گیری و کار‌های آینده
اگر چه نتایج حاصل از مطالعه موردی قطعی نیست، اما جدول 2 نشان می‌دهد که افزودن ویژگی‌های fNIRS به یک آشکارساز مبتنی بر EEG، عملکرد آن را به طور قابل توجهی بهبود می بخشد. علاوه براین براساس جدول 3 و شکل 5، تایید کردیم که اطلاعات موجود در fNIRS می‌تواند به تشخیص خیلی سریع‌تر حملات کمک کند.
با توجه به این نتایج امیدوارکننده، پژوهش‌های آتی ما در مورد به‌کارگیری این روش بر روی طبقه‌بندی‌کننده‌های دیگر و مجموعه داده‌های بزرگتر خواهد بود. همچنین بر استخراج ویژگی‌های جدیدتر و بهتر از سیگنال‌های fNIRS تمرکز خواهیم کرد و آنها را با ویژگی‌های استخراج شده از ثبت EEG ترکیب می‌کنیم. یکی از محدودیت‌های کار ما، عدم استفاده از الگوریتم انتخاب ویژگی است که اگر چه با توجه به نتایج امیدوار کننده تنها بر اساس استخراج دامنه سیگنال‌ها به عنوان ویژگی ممکن است مورد نیاز نباشد. در روش یادگیری ماشین ارائه شده، انتخاب پارامترهای بهینه مانند نوع هسته‌ی ماشین بردار پشتیبان و پارامترهای مرتبط با آن، تعداد نورون‌ها در لایه پنهان شبکه عصبی و همچنین فرآیند انتخاب ویژگی، در کار آتی بررسی خواهد شد.

 


 

دانلود رایگان مقاله انگلیسی

خرید ترجمه مقاله

 


 

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا