ترجمه مقاله قیمت گذاری مبتنی بر مدل برای مشتقات مالی – سال 2015
مشخصات مقاله:
عنوان فارسی مقاله:
قیمت گذاری مبتنی بر مدل برای مشتقات مالی
عنوان انگلیسی مقاله:
Model-based pricing for financial derivatives
کلمات کلیدی مقاله:
مدلهای EGARCH و GJR، نوآوری غیر نرمال، NGARCH ، ارزشگذاری اختیار معامله، معیار بی تفاوت نسبت به ریسک، چولگی فراریت
مناسب برای رشته های دانشگاهی زیر:
اقتصاد و حسابداری
مناسب برای گرایش های دانشگاهی زیر:
حسابداری مالی، اقتصاد مالی
وضعیت مقاله انگلیسی و ترجمه:
مقاله انگلیسی را میتوانید به صورت رایگان با فرمت PDF از باکس زیر دانلود نمایید. ترجمه این مقاله با فرمت WORD – DOC آماده خریداری و دانلود آنی میباشد.
فهرست مطالب:
چکیده
1. مقدمه
2. معیار بی تفاوت نسبت به ریسک Esscher
3. فرایندهای بازده دارایی برطبق Q
1. 3. نوآوری نرمال
2. 3. نوآوری SNG
3. 3 نوآوری SNIG
4. روش قیمت گذاری مبتنی بر مدل
1. 4. مدلهای قیمت گذاری از نوع GIM
2. 4. مدلهای قیمت گذاری از نوع ARMA
5. مطالعه شبیه سازی
6. کاربرد
7. ملاحظات پایانی
قسمتی از مقاله انگلیسی و ترجمه آن:
Abstract
Assume that St is a stock price process and Bt is a bond price process with a constant continuously compounded risk-free interest rate, where both are defined on an appropriate probability space P. Let yt = log(St/St−1). yt can be generally decomposed into a conditional mean plus a noise with volatility components, but the discounted St is not a martingale under P. Under a general framework, we obtain a risk-neutralized measure Q under which the discounted St is a martingale in this paper. Using this measure, we show how to derive the risk neutralized price for the derivatives. Special examples, such as NGARCH, EGARCH and GJR pricing models, are given. Simulation study reveals that these pricing models can capture the ‘‘volatility skew’’ of implied volatilities in the European option. A small application highlights the importance of our model-based pricing procedure.
1. Introduction
After the seminal work of Black and Scholes (1973) and Merton (1973), there has been explosive growth in the trading activities on derivatives in the worldwide financial markets. A fundamental question in finance is how we give a fair price for the derivative, whose payoff is on the evolution of an asset price upon which the derivative is written. Black and Scholes (1973) first fairly valued the option according to the principle of ‘‘the absence of arbitrage’’. Their valuation method relies on ‘‘efficient market hypothesis’’, under which there exists a risk-neutralized probability measure such that the discounted asset price is a martingale, and then a fair price of the derivative is the expected discounted value of its future payoff under this measure. Particularly, the risk-neutralized measure is not unique when the market is incomplete. For more discussions on the principle of ‘‘the absence of arbitrage’’, we refer to Harrison and Kreps (1979) and Harrison and Pliska (1981).
چکیده
فرض کنید St فرایند قیمت سهام و Bt فرایند قیمت اوراق قرضه با نرخ بهره بدون ریسک دائماًترکیب شده ثابت است، که هر دو برروی یک فضای احتمال مناسب P تعریف شده اند. فرض کنیدyt = log(St/St−1). به طور کلی yt را می توان به میانگین شرطی به علاوه نویزبا مولفه های فراریت تجزیه نمود، اما St تنزیل شده، تحت فضای P، یک مارتینگل (افسار) محسوب نمی شود. طبق چارچوب عمومی، معیار بی تفاوت نسبت به ریسک Q را بدست می آوریم که طبق آن St تنزیل شده در این مقاله، یک مارتینگل محسوب می شود. با استفاده از این معیار، نشان می دهیم چگونه قیمت بی تفاوت نسبت به ریسک برای مشتقات را بدست می آوریم. در اینجا مثالهای ساده ای نظیرمدلهای قیمت گذاری NGARCH، EGARCH و GJR، مطرح شده است. مطالعه شبیه سازی نشان می دهد که این مدلهای قیمت گذاری می توانند چولگی فراریت فراریت های ضمنی در اختیار معامله اروپایی را بدست بیاورند. یک کاربرد کوچک، اهمیت روش قیمت گذاری مبتنی بر مدل پیشنهادی را روشن می کند.
1. مقدمه
پس از کار اصلی Black و Scholes (1973)، و Merton (973) فعالیتهای تجاری در مورد مشتقات در بازارهای مالی سرتاسرجهان، رشد افنجاری داشته است. یکی از سئوالات بنیادی در مالیه، نحوه ارائه یک قیمت منصفانه برای مشتق است، که پرداختش، تکامل یک قیمت دارایی است که براساس آن مشتق نوشته شده است. Black و Scholes (1973) ابتدا اختیار معامله را مطابق اصل عدم وجود آربیتراژ به طور منصفانه ارزشگذاری کردند. روش ارزشگذاری آنها متکی بر فرضیه بازار کارا است، که طبق آن یک معیار احتمال بی تفاوت نسبت به ریسک وجود دارد به گونه ای که قیمت دارایی تنزیل شده، یک مارتینگل است و سپس قیمت منصفانه مشتق، ارزش تنزیل شده مورد انتظارپرداخت آتی اش طبق این معیار می باشد. به ویژه، زمانی که بازار ناقص است، آنگاه معیار بی تفاوت نسبت به ریسک منحصر به فرد نیست. برای بحث های بیشتر راجع به اصل عدم وجود آربیتراژ، به Harrison و Kreps (1979) و Harrison و Pliska (1981) رجوع می کنیم.